Lược sử nhiên cứu Tương_tác_gen

Thuật ngữ “tương tác gen” có thể được ra đời vào khoảng những năm 1910 xuất phát từ các thí nghiệm của hai nhà di truyền học người Anh là William Bateson (1861 - 1926) và Reginald Punnett (1875 - 1967) vào năm 1905 về các hiện tượng di truyền không theo định luật Mendel.

Thí nghiệm của Bateson và Punnett

  • Thí nghiệm của hai ông tiến hành trên cây đậu thơm (Lathyrus odoratus, còn gọi là cây hương đậu, đậu ngọt) đã được giới thiệu ở nhiều sách giáo khoa Sinh học trên thế giới và ở Việt Nam.[4][3] Trong thí nghiệm này, Bateson và Punnett cho lai hai dòng hoa trắng (P) đều thuần chủng và thu được tất cả thế hệ F1 có hoa tím. Hiện tượng này vào thời đó rất kỳ lạ, bởi P đều là hoa màu trắng và thuần chủng cả. Sau đó, khi cho các cây F1 tự thụ phấn, thì sinh ra thế hệ F2 có tỉ lệ không phải là 3 trội: 1 lặn, mà lại là 382 hoa tím và 269 hoa trắng, khi sử dụng toán thống kê thì nhận thấy tỷ lệ này xấp xỉ 9: 7 (xem hình 1).[5]
  • Ngay từ đầu, Bateson đã cho rằng màu hoa của loài này là kết quả của một gen này nhưng lại bị "che" (ức chế) bởi một gen khác, mà hồi đó (năm 1913) Bateson đã sử dụng thuật ngữ “gen đứng trên” (standing upon gene) để chỉ gen “khác” này và ông cho rằng đây là ngoại lệ trong di truyền.[5]

Giải thích

Giải thích trên cơ sở Sinh hóa học
  • Nhiều năm sau, các nghiên cứu được tiến hành và dựa trên giả thuyết của G. Beadle và E. Tatum: “1 gen → 1 enzym” (1941), người ta xác định được cơ chế sinh hóa trong quá trình tạo thành màu hoa đậu thơm này. Cơ chế tóm tắt như sau (hình 2):
Hình 2: Sơ đồ cổ điển giải thích kiểu tương tác “9:7”.
  • Một tiền chất (precursor) không màu trong hoa chỉ được biến đổi thành chất trung gian (intermediate) nhờ enzym C được mã hóa bởi alen trội C (color, gen tạo màu), còn alen lặn c không tạo ra sản phẩm này.
  • Nếu chất trung gian được tạo thành, thì một en-zim khác gọi là P (purple, gen tạo sắc tố tím) sẽ chuyển hóa nó thành sắc tố an-tô-xi-a-nin màu tím; en-zim P do alen trội P mã hóa, còn alen lặn p không có chức năng này.[1], [4]
  • Vì gen C/c với gen P/p chẳng những không cùng lô-cut với nhau mà còn ở các nhiễm sắc thể khác nhau, nên thí nghiệm của Bateson và Punnett tóm tắt như nhiều người đã biết là:
P: CCpp × ccPP → F1: CcPp → F2: 9 (C-P-) + 7 (cc- - và - - pp).
  • Kết quả sơ đồ lai trên được triển khai bằng cách dùng “Bảng Punnett” (Punnett square). Trong thí nghiệm này, các gen vẫn phân li độc lập và tổ hợp ngẫu nhiên theo chi phối của định luật Men-đen, nhưng chúng tác động tương hỗ với nhau mà quy định kiểu hình phân li theo tỉ lệ 9: 7 được xem là biến dạng của tỉ lệ 9: 3: 3: 1 ở định luật di truyền độc lập của Men-đen (bảng 1).
Bảng 1: Bảng Punnett giải thích ti lệ phân li “9:7”.
                ♂

1/4 CP1/4 Cp1/4 cP1/4 cp
1/4 CP1/16 CCPP1/16 CCPp1/16 CcPP1/16 CcPp
1/4 Cp1/16 CCPp1/16 CCpp1/16 CcPp1/16 Ccpp
1/4 cP1/16 CcPP1/16 CcPp1/16 ccPP1/16 ccPp
1/4 cp1/16 CcPp1/16 Ccpp1/16 ccPp1/16 ccpp

Đồng thời, nhiều nhà khoa học nhận thấy thực chất của hiện tượng mà Bateson đặt tên là gen đứng trên có tác dụng “che” hay ức chế thì không phù hợp bằng tên tương tác bổ trợ (complementary interaction), nghĩa là lôcut này bổ sung, hỗ trợ cho hiệu quả của lôcut kia.[6]

Giải thích trên cơ sở Sinh học phân tử
  • Thực ra thì cơ chế phân tử đầy đủ của quá trình trên là phức tạp và gần đây mới được khám phá. Theo các phát hiện đã công bố, thì trong quá trình này có sự tham gia của hàng loạt gen, gồm: gen PAL (phenylalanine ammonia lyase); gen C4H (cinnamate-4-hydroxylase); gen 4CL (hay 4-coumarate là gen mã hóa CoA ligase); gen CHS (chalcone synthase); gen CHI (chalcone isomerase); gen F3H (flavanone 3-hydroxylase); genF3’H (flavonoid 3′-hydroxylase); gen F3’,5’H (flavonoid 3′,5′-hydroxylase); gen DFR (dihydroflavonol 4-reductase); gen ANS (anthocyanidin synthase); gen UFGT (UDP-glucose-flavonoid-glucosyltransferase); gen MT (methyl transferase).[7], [8] Các gen này gồm cả gen điều hòa và gen cấu trúc, mã hóa hàng loạt sản phẩm tương tác với nhau,tạo thành chuỗi phản ứng theo sơ đồ tổng quát ở hình 3.
Hình 3: Cơ chế sinh hóa cho kiểu tương tác “9:7”.[8]

Chú thích cho hình 3:

1 = Phê-nil-a-la-nin (Phe). 2 = Xi-na-mat (Cinnamate). 3 = Cu-ma-rat Cô-en-zym A (Coumarate-CoA). 4 = Xal-côn (Chalcone). 5 = Fla-va-nôn (Flavanone). 6 = Đi-hi-đrô-fla-va-nôn (Dihydroflavonone). 7 = Lơ-cô-an-tô-xi-a-ni-đin (Leucoanthocyanidine). 8 = An-tô-xi-a-ni-đin (Anthocyanidine). 9 = An-tô-xi-a-nin (Anthocyanine).

  • Như vậy, so với sơ đồ cổ điển (hình 2), thì tiền chất (precursor) là phê-nin-a-la-nin (Phe), sản phảm cuối trong chuỗi này là an-tô-xia-nin sau sẽ biến đổi thành sắc tố tím; gen C có thể là bất cứ gen nào tổng hợp ra các en-zim ở phần đầu chuỗi phản ứng này, còn gen P có thể là bất cứ gen nào tổng hợp ra các en-zim ở phần còn lại phía cuối chuỗi. Hai gen C và P này hoạt động trên nền di truyền (genetic background) của chuỗi phản ứng sinh hóa trên.

Ngày nay, tương tác gen được coi là cơ chế phổ biến trong quá trình hình thành kiểu hình của cả sinh giới, hơn cả cơ chế tương quan trội-lặn, đa a-len và gen đa hiệu.[4] Trong cơ chế của tương tác gen, thì sản phẩm của một gen được hình thành rồi biểu hiện hiệu quả của nó trên một mặt nền di truyền nhất định, mà ở đó gen này là gen điều biến (modifier genes) một hay nhiều gen khác và ngược lại.[1], [2]

Tài liệu tham khảo

WikiPedia: Tương_tác_gen http://www.yourarticlelibrary.com/biology/6-most-i... http://intersnp.meb.uni-bonn.de/ http://www.slideshare.net/harshrajshinde1/gene-int... http://articles.extension.org/pages/65363/poultry-... http://journal.frontiersin.org/article/10.3389/fpl... https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22651... https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26891... https://web.archive.org/web/20090510014437/http://... https://web.archive.org/web/20180809122404/http://... https://web.archive.org/web/20190502091900/http://...